Send to

Choose Destination
Biochemistry. 2005 Feb 8;44(5):1653-8.

EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a.

Author information

Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie und Biochemie, Albertstrasse 21, Chemiehochhaus, D-79104 Freiburg im Breisgau, Germany.


The proton-pumping NADH:ubiquinone oxidoreductase, which is also called respiratory complex I, transfers electrons from NADH to ubiquinone via one flavin mononucleotide (FMN) and up to nine iron-sulfur clusters. A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria. The isolated Escherichia coli complex I can be split into a NADH dehydrogenase fragment, a connecting fragment, and a membrane fragment. The soluble NADH dehydrogenase fragment represents the electron input part of the complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur clusters have been detected in this fragment by means of EPR spectroscopy. One of the EPR signals, called N1c, has spectral properties, which are not found in preparations of the complex from other organisms. Therefore, it is attributed to an additional binding motif on NuoG, which is present only in a few bacteria including E. coli. Here, we show by means of EPR spectroscopic analysis of the NADH dehydrogenase fragment containing site-directed mutations on NuoG that the EPR signals in question derived from cluster N1a on NuoE. The mutations in NuoG disturbed the assembly of the overproduced NADH dehydrogenase fragment indicating that a yet undetected cluster might be bound to the additional motif. Thus, there is no third binuclear iron-sulfur "N1c" in the E. coli complex I but an additional tetranuclear cluster that may be coined N7.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center