Format

Send to

Choose Destination
See comment in PubMed Commons below

On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface: a novel two-dimensional separation system for proteins.

Author information

  • 1National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, PR China. hechunliu@163.com

Abstract

A novel two-dimensional (2D) separation system for proteins was reported. In the system, a piece of dialysis hollow-fiber membrane was employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) and capillary non-gel sieving electrophoresis (CNGSE). The system is similar equivalent to two-dimensional polyacrylamide gel electrophoresis (2D PAGE), by transferring the principal of 2D PAGE separation to the capillary format. Proteins were focused and separated in first dimension CIEF based on their differences in isoelectric points (pIs). Focused protein zones was transferred to the dialysis hollow-fiber interface, where proteins hydrophobically complexed with sodium dodecyl sulfate (SDS). The negatively charged proteins were electromigrated and further resolved by their differences in size in the second dimension CNGSE, in which dextran solution, a replaceable sieving matrix instead of cross-linked polyacrylamide gel was employed for size-dependent separation of proteins. The combination of the two techniques was attributed to high efficiency of the dialysis membrane interface. The feasibility and the orthogonality of the combined CIEF-CNGSE separation technique, an important factor for maximizing peak capacity or resolution elements, were demonstrated by examining each technique independently for the separation of hemoglobin and protein mixtures excreting from lung cancer cells of rat. The 2D separation strategy was found to greatly increase the resolving power and overall peak capacity over those obtained for either dimension alone.

PMID:
15680795
DOI:
10.1016/j.jchromb.2004.04.038
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center