Send to

Choose Destination
See comment in PubMed Commons below
Gene Ther. 2005 Mar;12(6):546-51.

Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides.

Author information

  • 1Department for Cellular and Genetic Therapy, Institute for Microbiology, Rikshospitalet, Forskningsparken, Oslo, Norway.


Oligonucleotide-based sequence alteration in living cells is a substantial methodological challenge in gene therapy. Here, we demonstrate that using corrective single-stranded oligonucleotides (ssODN), high and reproducible sequence correction rates can be obtained. CHO cell lines with chromosomally integrated multiple copy EGFP reporter genes routinely show rates of 4.5% targeted sequence correction after transfection with ssODN. We demonstrate that the cell cycle influences the rates of targeted sequence correction in vivo, with a peak in the early S phase during ssODN exposure. After cell division, the altered genomic sequence is predominantly passed to one daughter cell, indicating that targeted sequence alteration occurs after the replication fork has passed over the targeted site. Although high initial correction rates can be obtained by this method, we show that a majority of the corrected cells arrest in the G2/M cell cycle phase, although 1-2% of the corrected cells form viable colonies. The G2/M arrest observed after targeted sequence correction can be partially released by caffeine, pentoxifylline or Go6976 exposure. Despite substantial remaining challenges, targeted sequence alteration based on ssODN increasingly promises to become a powerful tool for functional gene alterations.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center