Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Mar 25;280(12):11626-34. Epub 2005 Jan 21.

RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis.

Author information

  • 1Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada.

Abstract

Endochondral ossification is initiated by the differentiation of mesenchymal precursor cells to chondrocytes (chondrogenesis). This process is characterized by a strong interdependence of cell shape, cytoskeletal organization, and the onset of chondrogenic gene expression, but the molecular mechanisms mediating these interactions are not known. Here we investigated the role of the RhoA/ROCK pathway, a well characterized regulator of cytoskeletal organization, in chondrogenesis. We show that pharmacological inhibition of ROCK signaling by Y27632 resulted in increased glycosaminoglycan synthesis and elevated expression of the chondrogenic transcription factor Sox9, whereas overexpression of RhoA in the chondrogenic cell line ATDC5 had the opposite effects. Suppression of Sox9 expression by ROCK signaling was achieved through repression of Sox9 promoter activity. These molecular changes were accompanied by reorganization of the actin cytoskeleton, where RhoA/ROCK signaling suppressed cortical actin organization, a hallmark of differentiated chondrocytes. This led us to analyze the regulation of Sox9 expression by drugs affecting cytoskeletal dynamics. Both inhibition of actin polymerization by cytochalasin D and stabilization of existing actin filaments by jasplakinolide resulted in increased Sox9 mRNA levels, whereas inhibition of microtubule polymerization by colchicine completely blocked Sox9 expression. In conclusion, our data suggest that RhoA/ROCK signaling suppresses chondrogenesis through the control of Sox9 expression and actin organization.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk