Send to

Choose Destination
Mol Cell. 2005 Jan 21;17(2):251-64.

E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation.

Author information

Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.


The mechanism employed by DNA tumor viruses to inhibit p53-dependent transcription from chromatin is poorly understood. Here, we use in vitro-reconstituted chromatin and UV-irradiated cells to define the mechanism of human papillomavirus E6 oncoprotein in repressing p53-dependent transcription. We demonstrate that E6 does not prevent p53 or p300 recruitment to the chromatin but inhibits p300-mediated acetylation on p53 and nucleosomal core histones. This suppression of protein acetylation requires the E6-interacting regions of p300. Moreover, E6 mutants unable to interact with p53 or p300, but not deficient in inducing p53 degradation, fail to inhibit p53-mediated activation, indicating that a p53-E6-p300-containing protein complex is critical for repressing p53-targeted gene activation. That E6 acts as a molecular switch converting p53-p300 from an activating complex to a repressing entity on the chromatin, which occurs independently of E6AP-mediated protein degradation pathway, may represent a general mechanism for gene regulation.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center