Send to

Choose Destination
J Mol Biol. 2005 Feb 11;346(1):295-305. Epub 2004 Dec 13.

The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex.

Author information

Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.


The Tat system transports folded proteins across bacterial plasma and plant thylakoid membranes. To date, three key Tat subunits have been identified and mechanistic studies indicate the presence of two types of complex: a TatBC-containing substrate-binding unit and a separate TatA complex. Here, we used blue-native gel electrophoresis and affinity purification to study the nature of these complexes in Escherichia coli. Analysis of solubilized membrane shows that the bulk of TatB and essentially all of the TatC is found in a single 370kDa TatABC complex. TatABC was purified to homogeneity using an affinity tag on TatC and this complex runs apparently as an identical band. We conclude that this is the primary core complex, predicted to contain six or seven copies of TatBC together with a similar number of TatA subunits. However, the data indicate the presence of an additional form of Tat complex containing TatA and TatB, but not TatC; we speculate that this may be an assembly or disassembly intermediate of the translocator. The vast majority of TatA is found in separate complexes that migrate in blue-native gels as a striking ladder of bands with sizes ranging from under 100 kDa to over 500 kDa. Further analysis shows that the bands differ by an average of 34 kDa, indicating that TatA complexes are built largely, but possibly not exclusively, from modules of three or four TatA molecules. The range and nature of these complexes are similar in a TatC mutant that is totally inactive, indicating that the ladder of bands does not stem from ongoing translocation activity, and we show that purified TatA can self-assemble in vitro to form similar complexes. This spectrum of TatA complexes may provide the flexibility required to generate a translocon capable of transporting substrates of varying sizes across the plasma membrane in a folded state.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center