Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2005 Mar 15;563(Pt 3):945-55. Epub 2005 Jan 20.

The physiological regulation of toll-like receptor expression and function in humans.

Author information

1
School of Sport and Exercise Sciences, The Medical School, University of Birmingham, Birmingham, UK. graeme.lancaster@rmit.edu.au

Abstract

Eleven mammalian toll-like receptors (TLRs 1-11) have been identified to date and are known to play a crucial role in the regulation of immune responses; however, the factors that regulate TLR expression and function in vivo are poorly understood. Therefore, in the present study, we investigated the physiological regulation of TLR expression and function in humans. To examine the influence of diurnal rhythmicity on TLR expression and function, peripheral venous blood samples were collected from healthy volunteers (n = 8) at time points coinciding with the peak and nadir in the endogenous circulating cortisol concentration. While no diurnal rhythmicity in the expression of TLRs 1, 2, 4 or 9 was observed, the upregulation of costimulatory (CD80 and CD86) and antigen-presenting (MHC class II) molecules on CD14(+) monocytes following activation with specific TLR ligands was greater (P < 0.05) in samples obtained in the evening compared with the morning. To examine the influence of physical stress on TLR expression and function, peripheral venous blood samples were collected from healthy volunteers (n = 11) at rest and following 1.5 h of strenuous exercise in the heat (34 degrees C). Strenuous exercise resulted in a decrease (P < 0.005) in the expression of TLRs 1, 2 and 4 on CD14(+) monocytes. Furthermore, the upregulation of CD80, CD86, MHC class II and interleukin-6 by CD14(+) monocytes following activation with specific TLR ligands was decreased (P < 0.05) in samples obtained following exercise compared with at rest. These results demonstrate that TLR function is subject to modulation under physiological conditions in vivo and provide evidence for the role of immunomodulatory hormones in the regulation of TLR function.

PMID:
15661814
PMCID:
PMC1665604
DOI:
10.1113/jphysiol.2004.081224
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center