Send to

Choose Destination
J Biol Chem. 2005 Mar 25;280(12):11074-81. Epub 2005 Jan 17.

A five-coordinate metal center in Co(II)-substituted VanX.

Author information

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA.


In an effort to structurally probe the metal binding site in VanX, electronic absorption, EPR, and extended x-ray absorption fine structure (EXAFS) spectroscopic studies were conducted on Co(II)-substituted VanX. Electronic spectroscopy revealed the presence of Co(II) ligand field transitions that had molar absorptivities of approximately 100 m(-1) cm(-1), which suggests that Co(II) is five-coordinate in Co(II)-substituted VanX. Low temperature EPR spectra of Co(II)-substituted VanX were simulated using spin Hamiltonian parameters of M(S) = |+/-1/2), E/D = 0.14, g(real(x,y)) = 2.37, and g(real(z)) = 2.03. These parameters lead to the prediction that Co(II) in the enzyme is five-coordinate and that there may be at least one solvent-derived ligand. Single scattering fits of EXAFS data indicate that the metal ions in both native Zn(II)-containing and Co(II)-substituted VanX have the same coordination number and that the metal ions are coordinated by 5 nitrogen/oxygen ligands at approximately 2.0 angstroms. These data demonstrate that Co(II) (and Zn(II) from EXAFS studies) is five-coordinate in VanX in contrast to previous crystallographic studies (Bussiere, D. E., Pratt, S. D., Katz, L., Severin, J. M., Holzman, T., and Park, C. H. (1998) Mol. Cell 2, 75-84). These spectroscopic studies also demonstrate that the metal ion in Co(II)-substituted VanX when complexed with a phosphinate analog of substrate D-Ala-D-Ala is also five-coordinate.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center