Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2005 Mar;169(3):1425-36. Epub 2005 Jan 16.

Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior.

Author information

1
Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine, 92697-4040, USA.

Abstract

Drugs that target the serotonergic system are the most commonly prescribed therapeutic agents and are used for treatment of a wide range of behavioral and neurological disorders. However, the mechanism of the drug action remain a conjecture. Here, we dissect the genetic targets of serotonin (5HT), the selective 5HT reuptake inhibitor (SSRI) fluoxetine (Prozac), the tricyclic antidepressant imipramine, and dopamine. Using the well-established serotonergic response in C. elegans egg-laying behavior as a paradigm, we show that action of fluoxetine and imipramine at the 5HT reuptake transporter (SERT) and at 5HT receptors are separable mechanisms. Even mutants completely lacking 5HT or SERT can partially respond to fluoxetine and imipramine. Furthermore, distinct mechanisms for each drug can be recognized to mediate these responses. Deletion of SER-1, a 5HT1 receptor, abolishes the response to 5HT but has only a minor effect on the response to imipramine and no effect on the response to fluoxetine. In contrast, deletion of SER-4, a 5HT2 receptor, confers significant resistance to imipramine while leaving the responses to 5HT or fluoxetine intact. Further, fluoxetine can stimulate egg laying via the Gq protein EGL-30, independent of SER-1, SER-4, or 5HT. We also show that dopamine antagonizes the 5HT action via the 5HT-gated ion channel MOD-1 signaling, suggesting that this channel activity couples 5HT and dopamine signaling. These results suggest that the actions of these drugs at specific receptor subtypes could determine their therapeutic efficacy. SSRIs and tricyclic antidepressants may regulate 5HT outputs independently of synaptic levels of 5HT.

PMID:
15654117
PMCID:
PMC1449529
DOI:
10.1534/genetics.104.032540
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center