Send to

Choose Destination
See comment in PubMed Commons below
Chemphyschem. 2004 Dec 10;5(12):1821-30.

Macroscopic order and electro-optic response of dipolar chromophore-polymer materials.

Author information

Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.


This Minireview considers the key factors that govern the organization of macroscopic polarization in nonlinear optical systems obtained by electric poling of organic dipolar chromophores dissolved in polymer matrices. The macroscopic electric polarization depends on the thermodynamic state of the dipole system. The dependence of the paraelectric and antiferroelectric states of dipolar chromophores on the chromophore concentration and the strength of the poling field is discussed. Phase transitions between the para- and antiferroelectric states are investigated within the limits of the Ising and isotropic models for the chromophore dipoles and are considered for varying chromophore concentration, poling field strength, and macroscopic shape of the sample used for poling. The macroscopic polarization and electro-optic coefficient of the material change drastically upon phase transition. The theories are compared with the experimental data on the electro-optic coefficient dependence on the chromophore concentration. The isotropic dipole model shows excellent agreement with experiment for the chromophore systems most commonly used in nonlinear optics.


LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center