Format

Send to

Choose Destination
See comment in PubMed Commons below
Ann Anat. 2004 Dec;186(5-6):435-42.

Prenatal growth of the interorbital septum in Macaca mulatta.

Author information

1
Department of Anatomy and Reproductive Biology, University of Hawai'i School of Medicine, Honolulu, HI 96822, USA. lozanoff@hawaii.edu

Abstract

The interorbital septum is the portion of the anterior cranial base directly contiguous with the eyes. It is considered to be a primitive trait that has evolved independently in various primate groups as a result of ocular and olfactory convergence with concomitant encephalization. This process is hypothesized to have reduced the size of the lateral nasal capsule exposing the anterior cranial base to the ocular apparatus and thus creating an interorbital septum. The purpose of this study was to determine whether differential growth trajectories occur among the chondrocranial elements corresponding to this hypothesis. Macaca mulatta embryos from the Zingeser Collection were selected for this analysis since this primate shows a well-developed interorbital septum throughout ontogeny. Embryos between 40 and 90 days of gestation were selected from the collection and coronal sections including the eye, anterior cranial base and lateral nasal capsule were subjected to video microscopy and computerized reconstruction using SURFdriver Software. Tissue volumes were computed for these tissues while chondrocytic growth attributes were measured utilizing stereological techniques. Results showed a strong correlation between the volume of the lateral nasal capsule and anterior cranial base and these two structures showed a consistent correlation with an increasing eye volume. Chondrocytic volume density and average diameter were larger in the lateral nasal capsule while shape, numerical density and average volume did not differ between the two tissues. These data suggest if differential growth does account for a reduction of the nasal capsule compared to the central cranial base stem, it does not appear to result from differential tissue size change. However, certain cellular growth activities leading to premature chondrocytic hypertrophy may be involved.

PMID:
15646276
DOI:
10.1016/S0940-9602(04)80079-7
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center