Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2005 Jan 7;33(1):81-94. Print 2005.

Kinetics of tetramolecular quadruplexes.

Author information

Laboratoire de Biophysique, Muséum National d'Histoire Naturelle USM503 INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris Cedex 05, France.


The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant k (on), expressed in M(-3) x s(-1) decreases with increasing temperature, reflecting a negative activation energy (E (on)) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy E (off), but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3-6 consecutive guanines and 0-5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center