Photosystem I patterning imaged by scanning electrochemical microscopy

Langmuir. 2005 Jan 18;21(2):692-8. doi: 10.1021/la048075u.

Abstract

We report the first directed adsorption of Photosystem I (PSI) on patterned surfaces containing discrete regions of methyl- and hydroxyl-terminated self-assembled monolayers (SAMs) on gold. SAM and PSI patterns are characterized by scanning electrochemical microscopy (SECM). The insulating protein complex layer blocks the electron transfer of the SECM mediator, thereby reducing the electrochemical current significantly. Uniformly and densely packed adsorbed protein layers are observed with SECM. Pattern images correlate with our previous studies where we showed that low-energy surfaces (e.g., CH3-terminated) inhibit PSI adsorption in the presence of Triton X-100, whereas high-energy surfaces (e.g., OH-terminated) enable adsorption. Therefore, a SAM pattern with alternating methyl and hydroxyl surface regions allows PSI adsorption only on the hydroxyl surface, and this is demonstrated in the resulting SECM images.