Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2005 May;288(5):G964-71. Epub 2005 Jan 6.

Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum.

Author information

1
Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona, 1501 N. Campbell Ave., Tucson, Arizona 85724, USA. jcollins@peds.arizona.edu

Abstract

We sought to identify novel genes involved in intestinal iron absorption by inducing iron deficiency in rats during postnatal development from the suckling period through adulthood. We then performed comparative gene chip analyses (RAE230A and RAE230B chips; Affymetrix) with cRNA derived from duodenal mucosa. Real-time PCR was used to confirm changes in gene expression. Genes encoding the apical iron transport-related proteins [divalent metal transporter 1 (DMT1) and duodenal cytochrome b] were strongly induced at all ages studied, whereas increases in mRNA encoding the basolateral proteins iron-regulated gene 1 and hephaestin were observed only by real-time PCR. In addition, transferrin receptor 1 and heme oxygenase 1 were induced. We also identified induction of novel genes not previously associated with intestinal iron transport. The Menkes copper ATPase (ATP7a) and metallothionein were strongly induced at all ages studied, suggesting increased copper absorption by enterocytes during iron deficiency. We also found significantly increased liver copper levels in 7- to 12-wk-old iron-deficient rats. Also upregulated at most ages examined were the sodium-dependent vitamin C transporter, tripartite motif protein 27, aquaporin 4, lipocalin-interacting membrane receptor, and the breast cancer-resistance protein (ABCG2). Some genes also showed decreased expression with iron deprivation, including several membrane transporters, metabolic enzymes, and genes involved in the oxidative stress response. We speculate that dietary iron deprivation leads to increased intestinal copper absorption via DMT1 on the brush-border membrane and the Menkes copper ATPase on the basolateral membrane. These findings may thus explain copper loading in the iron-deficient state. We also demonstrate that many other novel genes may be differentially regulated in the setting of iron deprivation.

PMID:
15637178
DOI:
10.1152/ajpgi.00489.2004
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center