Send to

Choose Destination
Microbiology. 2005 Jan;151(Pt 1):233-42.

A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni.

Author information

Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.


The ability to use sulphite as a respiratory electron donor is usually associated with free-living chemolithotrophic sulphur-oxidizing bacteria. However, this paper shows that the chemoheterotrophic human pathogen Campylobacter jejuni has the ability to respire sulphite, with oxygen uptake rates of 23 +/- 8 and 28 +/- 15 nmol O(2) min(-1) (mg cell protein)(-1) after the addition of 0.5 mM sodium sulphite or metabisulphite, respectively, to intact cells. The C. jejuni NCTC 11168 Cj0004c and Cj0005c genes encode a monohaem cytochrome c and molybdopterin oxidoreductase, respectively, homologous to the sulphite : cytochrome c oxidoreductase (SOR) of Starkeya novella. Western blots of C. jejuni periplasm probed with a SorA antibody demonstrated cross-reaction of a 45 kDa band, consistent with the size of Cj0005. The Cj0004c gene was inactivated by insertion of a kanamycin-resistance cassette. The resulting mutant showed wild-type rates of formate-dependent respiration but was unable to respire with sulphite or metabisulphite as electron donors. 2-Heptyl-4-hydroxyquinoline-N-oxide (HQNO), a cytochrome bc(1) complex inhibitor, did not affect sulphite respiration at concentrations up to 25 microM, whereas formate respiration (which occurs partly via a bc(1) dependent route) was inhibited 50%, thus suggesting that electrons from sulphite enter the respiratory chain after the bc(1) complex at the level of cytochrome c. Periplasmic extracts of wild-type C. jejuni 11168 showed a symmetrical absorption peak at 552 nm after the addition of sulphite, demonstrating the reduction of cytochrome c. No cytochrome c reduction was observed after addition of sulphite to periplasmic extracts of the Cj0004c mutant. A fractionation study confirmed that the majority of the SOR activity is located in the periplasm in C. jejuni, and this activity was partially purified by ion-exchange chromatography. The presence of a sulphite respiration system in C. jejuni is another example of the surprising diversity of the electron-transport chain in this small-genome pathogen. Sulphite respiration may be of importance for survival in environmental microaerobic niches and some foods, and may also provide a detoxification mechanism for this normally growth-inhibitory compound.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center