Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proteomics. 2005 Feb;5(2):444-9.

Peeling the yeast protein network.

Author information

  • 1Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA.

Abstract

A set of highly connected proteins (or hubs) plays an important role for the integrity of the protein interaction network of Saccharomyces cerevisae by connecting the network's intrinsic modules. The importance of the hubs' central placement is further confirmed by their propensity to be lethal. However, although highly emphasized, little is known about the topological coherence among the hubs. Applying a core decomposition method which allows us to identify the inherent layer structure of the protein interaction network, we find that the probability of nodes both being essential and evolutionary conserved successively increases toward the innermost cores. While connectivity alone is often not a sufficient criterion to assess a protein's functional, evolutionary and topological relevance, we classify nodes as globally and locally central depending on their appearance in the inner or outer cores. The observation that globally central proteins participate in a substantial number of protein complexes which display an elevated degree of evolutionary conservation allows us to hypothesize that globally central proteins serve as the evolutionary backbone of the proteome. Even though protein interaction data are extensively flawed, we find that our results are very robust against inaccurately determined protein interactions.

PMID:
15627958
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk