Send to

Choose Destination
Muscle Nerve. 2005 Mar;31(3):365-73.

Decomposition-based quantitative electromyography: effect of force on motor unit potentials and motor unit number estimates.

Author information

School of Kinesiology, University of Western Ontario, London, Ontario, Canada.


Decomposition-based quantitative electromyography (DQEMG) allows for the collection of motor unit potentials (MUPs) over a broad range of force levels. Given the size principle of motor unit recruitment, it may be necessary to control for force when using DQEMG for the purpose of deriving a motor unit number estimate (MUNE). Therefore, this study was performed to examine the effect of force on the physiological characteristics of concentric needle- and surface-detected MUPs and the subsequent impact on MUNEs obtained from the first dorsal interosseous (FDI) muscle sampled using DQEMG. Maximum M waves were elicited in 10 subjects with supramaximal stimulation of the ulnar nerve at the wrist. Intramuscular and surface-detected EMG signals were collected simultaneously during 30-s voluntary isometric contractions performed at specific percentages of maximal voluntary contraction (MVC). Decomposition algorithms were used to identify needle-detected MUPs and their individual MU firing times. These MU firing times were used as triggers to extract their corresponding surface-detected MUPs (S-MUPs) using spike-triggered averaging. A mean S-MUP was then calculated, the size of which was divided into the maximum M-wave size to derive a MUNE. Increased levels of contraction had a significant effect on needle- and surface-detected MUP size, firing rate, and MUNE. These results suggest that force level is an important factor to consider when performing quantitative EMG, including MUNEs with this method.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center