Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L997-1001. Epub 2004 Dec 30.

Variable overoxidation of peroxiredoxins in human lung cells in severe oxidative stress.

Author information

Department of Internal Medicine, University of Oulu, Oulu University Hospital, Finland.


Peroxiredoxins (Prxs) are a group of thiol containing proteins that participate both in signal transduction and in the breakdown of hydrogen peroxide (H(2)O(2)) during oxidative stress. Six distinct Prxs have been characterized in human cells (Prxs I-VI). Prxs I-IV form dimers held together by disulfide bonds, Prx V forms intramolecular bond, but the mechanism of Prx VI, so-called 1-Cys Prx, is still unclear. Here we describe the regulation of all six Prxs in cultured human lung A549 and BEAS-2B cells. The cells were exposed to variable concentrations of H(2)O(2), menadione, tumor necrosis factor-alpha or transforming growth factor-beta. To evoke glutathione depletion, the cells were furthermore treated with buthionine sulfoximine. Only high concentrations (300 microM) of H(2)O(2) caused a minor increase (<28%, 4 h) in the expression of Prxs I, IV, and VI. Severe oxidant stress (250-500 microM H(2)O(2)) caused a significant increase in the proportion of the monomeric forms of Prxs I-IV; this was reversible at lower H(2)O(2) concentrations (< or =250 microM). This recovery of Prx overoxidation differed among the various Prxs; Prx I was recovered within 24 h, but recovery required 48 h for Prx III. Overall, Prxs are not significantly modulated by mild oxidant stress or cytokines, but there is variable, though reversible, overoxidation in these proteins during severe oxidant exposure.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center