Send to

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):686-91. Epub 2004 Dec 29.

Chondrogenesis mediated by PPi depletion promotes spontaneous aortic calcification in NPP1-/- mice.

Author information

Rheumatology/Medicine, Veterans Affairs Medical Center/University of California at San Diego, School of Medicine, CA 92161, USA.



We recently linked human arterial media calcification of infancy to heritable PC-1/nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) deficiency. NPP1 hydrolyzes ATP to generate PP(i), a physicochemical inhibitor of hydroxyapatite crystal growth. But pathologic calcification in NPP1 deficiency states is tissue-restricted and in perispinal ligaments is endochondral differentiation-mediated rather than simply a dystrophic process. Because ectopic chondro-osseous differentiation promotes artery calcification in atherosclerosis and other disorders, we tested the hypothesis that NPP1 and PP(i) deficiencies regulate cell phenotype plasticity to promote artery calcification.


Using cultured multipotential NPP1-/- mouse bone marrow stromal cells, we demonstrated spontaneous chondrogenesis inhibitable by treatment with exogenous PP(i). We also demonstrated cartilage-specific gene expression, upregulated alkaline phosphatase, decreased expression of the physiological calcification inhibitor osteopontin, and increased calcification in NPP1-/- aortic smooth muscle cells (SMCs). Similar changes were demonstrated in aortic SMCs from ank/ank mice, which are extracellular PP(i)-depleted because of defective ANK transmembrane PP(i) transport activity. Moreover, NPP1-/- and ank/ank mice demonstrated aortic media calcification by von Kossa staining, and intra-aortic cartilage-specific collagen gene expression was demonstrated in situ in NPP1-/- mice.


NPP1 and PP(i) deficiencies modulate phenotype plasticity in artery SMCs and chondrogenesis in mesenchymal precursors, thereby stimulating artery calcification by modulating cell differentiation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center