Send to

Choose Destination
J Nutr. 2005 Jan;135(1):19-26.

Alanylglutamine dipeptide and growth hormone maintain PepT1-mediated transport in oxidatively stressed Caco-2 cells.

Author information

Department of Nutrition Science, University of Bonn, Germany.


Reactive oxygen species (ROS) produced by gut mucosal cells during conditions such as inflammatory bowel disease (IBD) may impair mucosal repair and nutrient transport/absorptive function. Absorption of di- and tripeptides in the small intestine and colon is mediated by the H(+)-dependent transporter PepT1, but effects of oxidative stress on di- and tripeptide transport are unknown. We assessed whether exposure to hydrogen peroxide (H(2)O(2)) influences dipeptide transport in human colonic epithelial (Caco-2) cells. Uptake of [(14)C]glycylsarcosine (Gly-Sar) was used to evaluate PepT1-mediated dipeptide transport. Exposure to 1-5 mmol/L H(2)O(2) for 24 h caused a dose-dependent decrease in Gly-Sar transport, which was associated with decreased PepT1 transport velocity (V(max)). Treatment with alanylglutamine (Ala-Gln) or growth hormone (GH) did not alter Caco-2 Gly-Sar transport in the absence of H(2)O(2). However, both Ala-Gln and GH prevented the decrease in dipeptide transport observed with 1 mmol/L H(2)O(2) treatment. Ala-Gln, but not GH, maintained cellular glutathione and prevented the decrease in PepT1 protein expression. Thus, these agents should be further investigated as potential therapies to improve absorption of small peptides in disorders associated with oxidative injury to the gut mucosa.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center