Estimation of psychometric functions from adaptive tracking procedures

Percept Psychophys. 1992 Mar;51(3):247-56. doi: 10.3758/bf03212251.

Abstract

Because adaptive tracking procedures are designed to avoid stimulus levels far from a target threshold value, the psychometric function constructed from the trial-by-trial data in the track may be accurate near the target level but a poor reflection of performance at levels far removed from the target. A series of computer simulations was undertaken to assess the reliability and accuracy of psychometric functions generated from data collected in up-down adaptive tracking procedures. Estimates of psychometric function slopes were obtained from trial-by-trial data in simulated adaptive tracks and compared with the true characteristics of the functions used to generate the tracks. Simulations were carried out for three psychophysical procedures and two target performance levels, with tracks generated by psychometric functions with three different slopes. The functions reconstructed from the tracking data were, for the most part, accurate reflections of the true generating functions when at least 200 trials were included in the tracks. However, for 50- and 100-trial tracks, slope estimates were biased high for all simulated experimental conditions. Correction factors for slope estimates from these tracks are presented. There was no difference in the accuracy and reliability of slope estimation due to target level for the adaptive track, and only minor differences due to psychophysical procedure. It is recommended that, if both threshold and slope of psychometric functions are to be estimated from the trial-by-trial tracking data, at least 100 trials should be included in the tracks, and a three- or four-alternative forced-choice procedure should be used. However, good estimates can also be obtained using the two-alternative forced-choice procedure or less than 100 trials if appropriate corrections for bias are applied.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Attention*
  • Auditory Threshold*
  • Humans
  • Loudness Perception*
  • Psychoacoustics