Send to

Choose Destination
See comment in PubMed Commons below
Kidney Int. 2005 Jan;67(1):167-77.

Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy.

Author information

Department of Internal Medicine, Korea University, Ansan City, Kyungki-Do, Republic of Korea.



Vascular endothelial growth factor (VEGF) and its receptors have been implicated in the pathogenesis of diabetic nephropathy. The objective of this study was to determine whether alterations of the plasma and urinary VEGF and sFLT-1 levels were related to the stages and risk factors of diabetic nephropathy. In addition, we also examined the regulation of the VEGF/sFLT-1 expression by various stimuli in cultured human proximal tubule cells (HPTC).


A total of 107 type 2 diabetic patients and 47 healthy control subjects were studied. The expression and protein levels of VEGF and sFLT-1 were measured by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA).


The urinary VEGF and sFLT-1 excretions were significantly increased in the microalbuminuric and proteinuric diabetic patients. The urinary VEGF levels were positively correlated with the urinary albumin to creatinine ratio (ACR), urinary sFLT-1 levels, and negatively correlated with creatinine clearance. The urinary sFLT-1 levels also showed a positive relationship with the urinary ACR. In cultured HPTC, high glucose stimuli rapidly up-regulated VEGF synthesis without having any effect on sFLT-1 synthesis. Interestingly, angiotensin II (Ang II) induced a dose-dependent increase in the synthesis of both VEGF and sFLT-1, which was significantly blocked by losartan.


The urinary excretion of VEGF and sFLT-1 increased at a relatively early stage in diabetic nephropathy associated with urinary albumin excretion. A marked increase in both VEGF/sFLT-1 synthesis in response to Ang II was observed in HPTC, which was different from the response to glucose stimuli. These findings may imply that VEGF and sFLT-1 can actively take part in the pathogenesis of diabetic nephropathy.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center