Send to

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2005 Jan;23(1):34-40.

The origin of osteoprogenitor cells responsible for heterotopic ossification following hip surgery: an animal model in the rabbit.

Author information

Department of Orthopaedics and Rehabilitation, and The Musculoskeletal Research Laboratory, The Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine, USA.



To investigate the source of osteoprogenitor cells responsible for heterotopic ossification (HO) following total hip arthroplasty in an animal model.


New Zealand White (NZW) rabbits (n = 20) received a radiation treatment 24 h preoperatively to the hip joint of one hindquarter and to the femoral shaft of the contralateral side. Subjects underwent bilateral hip surgery 24 h after treatment. Subjects were euthanized and radiographed 4 months postoperatively. Heterotopic ossification was graded according to a modified Brooker scale. Mean grade, intra-observer reliability, and statistical significance (p < 0.05) were evaluated to compare the severity of heterotopic ossification between hindquarters treated with hip irradiation versus those treated with femoral shaft irradiation.


The Fleiss Weighted Kappa Statistic indicated "almost perfect" (0.872) intra-rater reliability of radiographic heterotopic ossification grading. The average heterotopic ossification grade for the group receiving radiation to the hip was significantly greater than that for the group receiving radiation to the femoral shaft (2.575 versus 2.0, p < 0.02).


Although both have some beneficial effect, our results demonstrate that irradiation of the femoral canal is significantly more effective than irradiation of the hip joint and abductor musculature for heterotopic ossification prophylaxis. This suggests that osteoprogenitor cells responsible for heterotopic ossification originate from both the hip abductors and the femoral canal, but the data provide indirect evidence that the femoral canal may be a more dominant source of these cells in the rabbit model.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center