Send to

Choose Destination
J Am Chem Soc. 2004 Dec 22;126(50):16659-64.

Label-free molecular interaction determinations with nanoscale interferometry.

Author information

Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, Tennessee 37235-1822, USA.


Quantification of protein-protein and ligand-substrate interactions is central to understanding basic cellular function and for evaluating therapeutics. To mimic biological conditions, such studies are best executed without modifying the proteins or ligands (i.e., label-free). While tools for label-free assays exist, they have limitations making them difficult to fully integrate into microfluidic devices. Furthermore, it has been problematic to reduce detection volumes for on-channel universal analyte quantification without compromising sensitivity, as needed in label-free methods. Here we show how backscattering interferometry in rectangular channels (BIRC) facilitates label-free studies within picoliter volumes. The simple and unique optical train was based on rectangular microfluidic channels molded in poly(dimethylsiloxane) and low-power coherent radiation. Quantification of irreversible streptavidin-biotin binding and reversible protein A-human IgG Fc molecular interactions in a 225 pL detection volume was carried out label-free and noninvasively. Detection limits of 47 x 10(-15) mol of biotin reacted with surface-immobilized streptavidin were achieved. In the case of reversible interactions of protein A and the Fc fragment of human IgG, detection limits were determined to be 2 x 10(-15) mol of IgG Fc. These experiments demonstrate for the first time that (1) high-sensitivity universal solute quantification is possible using interferometry performed within micrometer-sized channels formed in inexpensive PDMS chips, (2) label-free reversible molecular interaction can be studied with femtomoles of solute, and (3) BIRC has the potential to quantify binding affinities in a high-throughput format.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center