Send to

Choose Destination
See comment in PubMed Commons below
J Urol. 2005 Jan;173(1):276-80.

Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model.

Author information

Departments of Urology and Pediatric Urology, Hannover Medical School, Cark-Neuberg-Strasse 1, D-30625 Hannover, Germany.



We generated a vascularized, autologous, reseeded bladder substitute and evaluated immediate vascularization and perfusion of the graft after implantation to the recipient organism in a porcine model.


Acellular matrix was processed from porcine small bowel segments by subsequent mechanical, chemical and enzymatic decellularization, preserving the jejunal arteriovenous pedicles. In 2 separate steps the matrix was reseeded with primary bladder smooth muscle cells (SMCs) and urothelial cells (UCs), and its vascular structures were resurfaced with endothelial progenitor cells (EPCs). To evaluate graft perfusion short-term implantation was performed.


The acellular scaffold was successfully repopulated with multilayers of ingrowing SMCs and superficial UCs. After reseeding the jejunal arteriovenous pedicles with EPCs and cultivation for 3 weeks the larger vessels as well as the intramural scaffold capillary network were repopulated with cell monolayers expressing endothelial specific proteins. Perfusion stagnation and implant thrombosis occurred within 30 minutes after the implantation of acellular scaffolds not reseeded with EPCs. In the EPC reseeded group the vascular system revealed intact perfusion and no relevant thrombus formation was observed after 1 or 3 hours.


The current study of successful SMC and UC reseeding, vessel resurfacing with EPCs and short-term vascular patency represents the promising in vitro and in vivo basis for further evaluation of this biological vascularized matrix in chronic long-term large animal implantation experiments.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center