Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Mar 4;280(9):8086-93. Epub 2004 Dec 8.

Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-alpha induction by CpG-A in plasmacytoid dendritic cells.

Author information

1
Department of Internal Medicine, Division of Clinical Pharmacology, Ludwig-Maximilians-University of Munich, 80336 Muenchen, Germany.

Abstract

Plasmacytoid dendritic cells (PDC) represent a highly specialized immune cell subset that produces large quantities of the anti-viral cytokines type I interferons (IFN-alpha and IFN-beta) upon viral infection. PDC employ a member of the family of toll-like receptors, TLR9, to detect CpG motifs (unmethylated CG dinucleotides in certain base context) present in viral DNA. A certain group of CpG motif-containing oligodeoxynucleotides (CpG ODN), CpG-A, was the first synthetic stimulus available that induced large amounts of interferon-alpha (IFN-alpha) in PDC. However, the mechanism responsible for this activity remained elusive. CpG-A is characterized by a central palindrome and poly(G) at the 5' and 3' end. Here we demonstrate that CpG-A self-assembles to higher order tertiary structures via G-tetrad formation of their poly(G) motifs. Spontaneous G-tetrad formation of CpG-A required the palindrome sequence allowing structure formation in a physiological environment. Once formed, G-tetrad-linked structures were stable even under denaturing conditions. Atomic force microscopy revealed that the tertiary structures formed by CpG-A represent nucleic acid-based nanoparticles in the size range of viruses. Similarly sized preformed polystyrene nanoparticles loaded with a CpG ODN that is otherwise weak at inducing IFN-alpha (CpG-B) gained the potency of CpG-A to induce IFN-alpha. Higher ODN uptake in PDC was not responsible for the higher IFN-alpha-inducing activity of CpG-A or of CpG-B-coated nanoparticles as compared with CpG-B. Based on these results we propose a model in which the spatial configuration of CpG motifs as particle is responsible for the virus-like potency of CpG-A to induce IFN-alpha in PDC.

PMID:
15591070
DOI:
10.1074/jbc.M410868200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center