Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Feb 25;280(8):6861-71. Epub 2004 Dec 9.

Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events.

Author information

Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.


In this study, we address the mechanism of visual arrestin release from light-activated rhodopsin using fluorescently labeled arrestin mutants. We find that two mutants, I72C and S251C, when labeled with the small, solvent-sensitive fluorophore monobromobimane, exhibit spectral changes only upon binding light-activated, phosphorylated rhodopsin. Our analysis indicates that these changes are probably due to a burying of the probes at these sites in the rhodopsin-arrestin or phospholipid-arrestin interface. Using a fluorescence approach based on this observation, we demonstrate that arrestin and retinal release are linked and are described by similar activation energies. However, at physiological temperatures, we find that arrestin slows the rate of retinal release approximately 2-fold and abolishes the pH dependence of retinal release. Using fluorescence, EPR, and biochemical approaches, we also find intriguing evidence that arrestin binds to a post-Meta II photodecay product, possibly Meta III. We speculate that arrestin regulates levels of free retinal in the rod cell to help limit the formation of damaging oxidative retinal adducts. Such adducts may contribute to diseases like atrophic age-related macular degeneration (AMD). Thus, arrestin may serve to both attenuate rhodopsin signaling and protect the cell from excessive retinal levels under bright light conditions.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center