Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2005 Feb 1;14(3):357-72. Epub 2004 Dec 8.

Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis.

Author information

1
Neurogenetics Program, Department of Neurology, Neuropsychiatric Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Abstract

Huntington's disease (HD) is caused by expansion of a polyglutamine tract near the N-terminal of huntingtin. Mutant huntingtin forms aggregates in striatum and cortex, where extensive cell death occurs. We used a Drosophila polyglutamine peptide model to assess the role of specific cell death regulators in polyglutamine-induced cell death. Here, we report that polyglutamine-induced cell death was dramatically suppressed in flies lacking Dark, the fly homolog of human Apaf-1, a key regulator of apoptosis. Dark appeared to play a role in the accumulation of polyglutamine-containing aggregates. Suppression of cell death, caspase activation and aggregate formation were also observed when mutant huntingtin exon 1 was expressed in homozygous dark mutant animals. Expanded polyglutamine induced a marked increase in expression of Dark, and Dark was observed to colocalize with ubiquitinated protein aggregates. Apaf-1 also was found to colocalize with huntingtin-containing aggregates in a murine model and HD brain, suggesting a common role for Dark/Apaf-1 in polyglutamine pathogenesis in invertebrates, mice and man. These findings suggest that limiting Apaf-1 activity may alleviate both pathological protein aggregation and neuronal cell death in HD.

PMID:
15590702
DOI:
10.1093/hmg/ddi032
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center