Format

Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng. 2004 Sep-Oct;10(9-10):1386-98.

Comparison of in vitro mineralization by murine embryonic and adult stem cells cultured in an osteogenic medium.

Author information

1
Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA.

Abstract

Nearly half a million bone-grafting procedures occurred in the United States in the year 2000. Tissue-engineered bone substitutes may mitigate difficulties associated with current grafting options. Embryonic stem cells (ESCs) could be a potential cell source for bone substitutes; however, direct comparisons between ESCs and other cell sources are lacking. Here we provide a direct, long-term, in vitro comparison of mineralization processes in adult, marrow-derived, mesenchymal stem cells (MSCs) and ESCs from the 129/Sv+c/+p mouse strain. MSCs were observed to grow at a slower rate than ESCs. MSCs expressed seven times more alkaline phosphatase (AP) per cell than did ESCs and immediately showed type I collagen and osteocalcin production. ESCs also produced type I collagen and osteocalcin, but production was delayed. Mineral deposition by ESCs was nearly 50 times higher than by MSCs. Spectroscopic analysis showed the calcium-to-phosphorus ratio (Ca:P) of the ESC mineral (1.26:1) to be significantly higher than that of the MSCs (0.29:1), but still 25% lower than hydroxyapatite (1.67:1). Addition of basic fibroblast growth factor significantly inhibited AP expression, mineral deposition, and Ca:P ratios in MSCs and had little effect on ESCs. These functional characteristics may assist with cell selection for purposes of bone tissue engineering.

PMID:
15588399
DOI:
10.1089/ten.2004.10.1386
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center