Format

Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng. 2004 Sep-Oct;10(9-10):1297-307.

Perfusion of medium with supplemented growth factors changes metabolic activities and cell morphology of hepatocyte-nonparenchymal cell coculture.

Author information

1
Department of Biomedical Engineering, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8575, Japan.

Abstract

To develop a feasible perfusion-type bioartificial liver device, perfusion of hepatocyte-nonparenchymal cell (NPC) cocultures with medium supplemented with hepatocyte growth factor (HGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) was carried out. On day 1 of culture, perfusion at a constant shear stress of 1.3 dyn/cm2 enhanced ammonia metabolic and urea synthetic activities of hepatocytes. These enhanced activities were sustained up to day 7 only when growth factors were present. In contrast, no beneficial effects of growth factors on these activities were observed in static cultures. In perfusion cultures, three-dimensional cell aggregates were formed. On the surface of these aggregates, flattened cell layers composed mainly of NPCs were found, and the central cluster of cell aggregates was composed of round-shaped hepatocytes and reticulin fibrils. These observations strongly suggested that the reconstruction of different types of liver cells and connective tissues formed tissue-mimicking cell aggregates in the perfusion culture that was able to modulate the liver-specific functions of hepatocytes. Thus, perfusion culture conditions of the hepatocyte--NPC coculture system should be appropriately designed to induce suitable reconstruction of the cultured cells for use as a bioartificial liver device.

PMID:
15588390
DOI:
10.1089/ten.2004.10.1297
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center