Format

Send to

Choose Destination
Atherosclerosis. 2005 Jan;178(1):207-15.

Macrophage migration inhibitory factor induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques.

Author information

1
Department of Medicine, The First People's Foshan Hospital, Foshan, Guangdong, China.

Abstract

Macrophage migration inhibitory factor (MIF) has been shown to participate in both experimental and human atherogenesis. Expression of MMP-9 has been shown to play a role in the instability of atherosclerotic plaque. Thus, we hypothesize that MIF may participate in the destabilization of atherosclerotic plaques by stimulating MMP-9 expression. This hypothesis was investigated by examining the expression of MIF and MMP-9 in human atherosclerotic plaques using two-color immunostaining and by determining the potential role of MIF in the induction of MMP-9 expression in vascular smooth muscle cells (VSMC) and macrophages in vitro. Two-color immunohistochemistry demonstrated that MIF was strongly upregulated by macrophages and VSMCs. This was associated with marked increase in MMP-9 expression in vulnerable atheromatous plaques, but not in the fibrous lesions. Upregulation of MIF and MMP-9 in vulnerable atheromatous plaques was associated with the weakening of fibrous caps. The role of MIF in MMP-9 expression was demonstrated by the ability of MIF to directly induce MMP-9 mRNA and protein expression in macrophages and in VSMCs in a dose and time-dependent manner, which was blocked by a neutralizing MIF antibody. In conclusion, MIF and MMP-9 are markedly upregulated in vulnerable atheromatous plaques. The ability of MIF to induce MMP-9 expression in VSMCs and macrophages suggests that MIF may play a role in the destabilization of human atherosclerotic plaques.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center