Send to

Choose Destination
Ultrasound Med Biol. 2004 Oct;30(10):1355-63.

Quantification of perfusion of liver tissue and metastases using a multivessel model for replenishment kinetics of ultrasound contrast agents.

Author information

Deutsches Krebsforschungszentrum, Department of Radiology, D-69120 Heidelberg, Germany.

Erratum in

  • Ultrasound Med Biol. 2005 May;31(5):719.


Low-MI (mechanical index) ultrasound allows real-time observation of replenishment kinetics after destruction ("flash") of ultrasound contrast agents (USCA). We developed an examination protocol and a mathematical model to quantify perfusion of liver tissue and hepatic metastases. Using a modified multivessel model, we attempted a consistent, physiological description of microbubble replenishment in liver tissue. Perfusion parameters were calculated, separately for the arterial and portal venous phase of liver perfusion, using an i.v. bolus injection of 2 x 2.4 mL SonoVue. The model was evaluated for 10 examinations of liver metastases using flash/low-MI imaging. In contrast to the established, exponential model, the new model consistently describes the sigmoid replenishment of USCA measured in vivo, using flash/low-MI imaging. Parameters for blood volume, blood velocity and blood flow in liver tissue and metastases can be calculated during the arterial and the portal venous phase after a CA bolus injection. The median arterial perfusion in the examined liver metastases was more than 2.5 times higher than in normal liver tissue, whereas the median perfusion during the portal venous phase was more than five times higher in the liver tissue than that in metastases. Microbubble replenishment measured with flash/low-MI US techniques can be consistently analyzed using the multivessel model, even after a bolus injection of USCA. This allows for the quantification of perfusion of liver tissue and hepatic metastases and provides promising parameters of tissue viability and tumor characterization.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center