Send to

Choose Destination
Brain Res Mol Brain Res. 2004 Dec 20;132(2):235-40.

Expression of axotomy-inducible and apoptosis-related genes in sensory nerves of rats with experimental diabetes.

Author information

Division of Neuroscience, School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.


In diabetes, peripheral nerves suffer deficient neurotrophic support-a situation which resembles axotomy. This raises the question: does inappropriate establishment of an axotomised neuronal phenotype contribute to diabetic neuropathy, and in extremis, does this provoke apoptosis? We hybridized reverse-transcribed RNA, from the dorsal root ganglia (DRG) of 8-week streptozotocin (STZ)-induced diabetic rats, to Affymetrix Rat Genome U34A chips and scanned the array for expression of (a) genes that are upregulated by axotomy, (b) proapoptotic and (c) anti-apoptotic genes. Expression of the axotomy-responsive genes coding for growth-associated protein 43 (GAP-43), galanin, neuropeptide Y (NPY), pre-pro-vasoactive intestinal polypeptide (pre-pro-VIP), neuronal nitric oxide synthase (nNOS), protease nexin 1, heat-shock protein 27 (HSP 27) and myosin light chain kinase II (MLCK II) was unaffected in ganglia from diabetic rats compared to controls; thus, no axotomised phenotype was established. The expression of the majority of proapoptotic genes in the DRG was also unaltered (bax, bad, bid, bok, c-Jun, p38, TNFR1, caspase 3 and NOS2). Similarly there was no change in expression of the majority of antiapoptotic genes (bcl2, bcl-xL, bcl-w, NfkappaB). These alterations in gene expression make it clear that neither axotomy nor apoptotic phenotypes are established in neurones in this model of diabetes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center