Send to

Choose Destination
See comment in PubMed Commons below
Matrix Biol. 2004 Nov;23(7):457-66.

Expression and characterization of recombinant osteopontin peptides representing matrix metalloproteinase proteolytic fragments.

Author information

  • 1Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive Scarborough, ME 04074, USA.


Osteopontin (OPN) is a secreted, arginine-glycine-aspartic acid (RGD)-containing phosphoprotein proteolytically modified by members of the matrix metalloproteinase (MMP) family. We previously defined the MMP-3 and MMP-7 cleavage sites in OPN and found increased adhesive and migratory activity of a pool of MMP-cleaved fragments compared to full-length OPN. In the present study, we performed mutational analysis of recombinant full-length OPN and generated recombinant OPN fragments corresponding to the MMP-cleaved fragments, which have apparent molecular weights of 40, 32, and 25 kD by SDS-PAGE. Single residue mutations in 167L and 211L do not abrogate MMP cleavage although processing of the putative C-terminal fragment appears to be affected by a 167L to 167A mutation. The N-terminal 40-kD fragment was a stronger adhesive substrate compared to full-length OPN despite the observation that full-length OPN displayed greater binding in soluble phase to endothelial cell surfaces. While the 32-kD fragment showed significant binding to endothelial cell surfaces, the C-terminal 25-kD fragment did not interact with cell surface. Our data indicate that the increased adhesive activity of MMP-cleaved OPN was accountable by the N-terminal 40-kD fragment. We further analyzed receptor binding, using competition with peptides representing the alpha4beta1 and alpha9beta1 binding sites in the 40-kD N-terminal fragment. Using Jurkat cells, we found that a peptide corresponding to 131ELVTDFPTDLPATE144 had no effect on cell adhesion, whereas the peptide SVVYGLR competitively inhibited cell adhesion. These results suggest that a shorter motif that is found in MMP-cleaved OPN, 162SVVYG166, is sufficient to mediate cell adhesion of Jurkat cells to receptors, including the beta1 integrins, which have been previously characterized to bind the SVVYGLR sequence.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center