Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Med Chem. 2004 Dec;11(24):3163-84.

ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor.

Author information

1
Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain. fmollin@usal.es

Abstract

Synthetic ether-linked analogues of phosphatidylcholine and lysophosphatidylcholine, collectively named as antitumour lipids (ATLs), were initially synthesized in the late 60s, but have attracted a renewed interest since the finding that the ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3, edelfosine), a synthetic analogue of 2-lysophosphatidylcholine considered the ATL prototype, induces a selective apoptotic response in tumour cells, sparing normal cells. Unlike most chemotherapeutic agents currently used, ET-18-OCH3 does not interact with DNA, but act at the cell membrane, and thereby its effects seem to be independent of the proliferative state of target cells. Each part of the molecular structure of ET-18-OCH3 is important for its optimal proapoptotic activity. Recent progress has unveiled the molecular mechanism underlying the apoptotic action of ET-18-OCH3, involving membrane rafts and Fas/CD95 death receptor, and has led to the proposal of a two-step model for the ET-18-OCH3 selective action on cancer cells, namely: a) ET-18-OCH3 uptake into the tumour cell, but not in normal cells; b) intracellular activation of Fas/CD95 through its translocation and capping into membrane rafts. ET-18-OCH3 constitutes the first antitumour drug acting through the intracellular activation of the Fas/CD95 death receptor. Computational docking studies have allowed us to propose a molecular model for the putative interaction of ET-18-OCH3 with the intracellular Fas/CD95 death domain. This novel mechanism of action represents a new way to target tumour cells in cancer chemotherapy and can be of interest as a new framework in designing novel and more selective proapoptotic antitumour drugs.

PMID:
15579006
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Support Center