Format

Send to

Choose Destination
See comment in PubMed Commons below
Comb Chem High Throughput Screen. 2004 Dec;7(8):733-47.

Anti-endotoxin agents. 2. Pilot high-throughput screening for novel lipopolysaccharide-recognizing motifs in small molecules.

Author information

1
Department of Medicinal Chemistry, University of Kansas, Life Sciences Research Laboratories, 1501 Wakarusa Drive, Lawrence, KS 66049, USA.

Abstract

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are an integral part of the outer leaflet of the outer-membrane of Gram-negative bacteria. Lipopolysaccharides play a pivotal role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient, worldwide. The sequestration of circulatory endotoxin may be a viable therapeutic strategy for the prophylaxis and treatment of Gram-negative sepsis. We have earlier shown that the pharmacophore necessary for small molecules to bind LPS is simple, comprising of two protonatable cationic functions separated by about 15 A, permitting the simultaneous interaction with the negatively charged phosphates on lipid A, the toxically active center of endotoxin. In this report, we employ high-throughput screening methods, using a novel fluorescent probe displacement method. Searches in three-dimensional structure databases yielded about approximately 4000 commercially available small molecules, each possessing two cationic functions spaced approximately 15 A apart. Approximately 400 such compounds have been screened in an effort to validate the method by which high-affinity endotoxin binders can be identified. We show that the IC50 values that are obtained from the fluorescence-based primary screen are correlated both to the enthalpy of binding, as measured by isothermal titration calorimetry, as well as to biological potency in vitro assays. By performing rapid toxicity screens in tandem with the bioassays, lead compounds of interest can be easily identified for further systematic structural modifications and SAR studies.

PMID:
15578935
PMCID:
PMC1360204
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd. Icon for PubMed Central
    Loading ...
    Support Center