Send to

Choose Destination
Biomaterials. 2005 May;26(14):1895-903.

Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment.

Author information

Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612, USA.


The derivatization of surfaces with bioactive molecules is a research area of growing importance for cell and tissue engineering. Tetherable molecules used in such applications must contain an anchoring moiety as well as the biofunctional group, typically along with a spacer to prevent steric clashes between the target molecule and the tethering surface. Post-synaptic membrane receptors at chemical synapses in neural tissue mediate signaling to the post-synaptic neuron and are activated by the binding of diffusible neurotransmitter molecules released by the pre-synaptic neuron. However, little attention has been directed at developing neurotransmitter analogs that might retain functionality when tethered to a surface that could be interfaced with post-synaptic receptor proteins. Muscimol (5-aminomethyl-3-hydroxyisoxazole), an analog of GABA (gamma-aminobutryic acid), is a known potent agonist of GABA(A) and GABA(C) post-synaptic receptors found in retina and other central nervous system tissue. The present paper reports experiments testing the electrophysiological activity of "muscimol-biotin" on cloned GABA receptors expressed in Xenopus oocytes. This compound, which is potentially suitable for tethering at avidin-coated surfaces, consists of muscimol conjugated through an N-acyl linkage to a 6-aminohexanoyl chain that is distally terminated by biotin. We find that muscimol-biotin, as well as a structurally similar compound (muscimol-BODIPY) containing a bulky fluorophore at the distal end of the aminohexanoyl chain, exhibits substantial agonist activity at GABA(A) and GABA(C) receptors. Muscimol-biotin and other similarly biotinylated neurotransmitter analogs, in combination with surface functionalization using avidin-biotin technology, may be useful in applications involving the controlled activation of neuronal post-synaptic receptors by surface-attached molecules.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center