Format

Send to

Choose Destination
Dev Biol. 2005 Jan 1;277(1):1-15.

The evolutionary origin of cardiac chambers.

Author information

1
Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo-SP 05403-900, Brazil.

Abstract

Identification of cardiac mechanisms of retinoic acid (RA) signaling, description of homologous genetic circuits in Ciona intestinalis and consolidation of views on the secondary heart field have fundamental, but still unrecognized implications for vertebrate heart evolution. Utilizing concepts from evolution, development, zoology, and circulatory physiology, we evaluate the strengths of animal models and scenarios for the origin of vertebrate hearts. Analyzing chordates, lower and higher vertebrates, we propose a paradigm picturing vertebrate hearts as advanced circulatory pumps formed by segments, chambered or not, devoted to inflow or outflow. We suggest that chambers arose not as single units, but as components of a peristaltic pump divided by patterning events, contrasting with scenarios assuming that chambers developed one at a time. Recognizing RA signaling as a potential mechanism patterning cardiac segments, we propose to use it as a tool to scrutinize the phylogenetic origins of cardiac chambers within chordates. Finally, we integrate recent ideas on cardiac development such as the ballooning and secondary/anterior heart field paradigms, showing how inflow/outflow patterning may interact with developmental mechanisms suggested by these models.

PMID:
15572135
DOI:
10.1016/j.ydbio.2004.09.026
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center