Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2005 Feb;56(412):525-36. Epub 2004 Nov 29.

Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus.

Author information

  • 1Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.

Abstract

Lysine catabolism in plants is initiated by a bifunctional LKR/SDH (lysine-ketoglutarate reductase/saccharopine dehydrogenase) enzyme encoded by a single LKR/SDH gene. Yet, the AtLKR/SDH gene of Arabidopsis also encodes a second gene product, namely a monofunctional SDH. To elucidate the regulation of lysine catabolism in Arabidopsis through these two gene products of the AtLKR/SDH gene, an analysis was carried out on the effects of the hormones, abscisic acid and jasmonate, as well as various metabolic and stress signals, including lysine itself, on their mRNA and protein levels. The response of the two gene products to the various treatments was only partially co-ordinated, but the levels of the monofunctional SDH mRNA and protein were always in excess over their bifunctional LKR/SDH counterparts. These results suggest that lysine catabolism is regulated primarily by the first enzyme LKR, while the excess level of SDH enables efficient flux of lysine catabolism following the LKR step. Analysis of transgenic plants expressing beta-glucoronidase fusion constructs with the AtLKR/SDH and monofunctional AtSDH promoters demonstrated that transcriptional regulation contributes to the modulation of expression of the bifunctional LKR/SDH and monofunctional SDH gene products in response to hormonal and metabolic signals. To test whether the enhanced expression of the LKR/SDH gene under various hormonal and metabolic signals is correlated with enhanced lysine catabolism, wild-type Arabidopsis and a knockout mutant lacking lysine catabolism were exposed to abscisic acid and sugar starvation. Free lysine accumulated to significantly higher levels in this knockout mutant than in the wild-type plants.

PMID:
15569707
DOI:
10.1093/jxb/eri031
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center