Send to

Choose Destination
See comment in PubMed Commons below
Respir Res. 2004 Nov 27;5:23.

Inhibition of c-Jun NH2-terminal kinase or extracellular signal-regulated kinase improves lung injury.

Author information

  • 1Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea.



Although in vitro studies have determined that the activation of mitogen-activated protein (MAP) kinases is crucial to the activation of transcription factors and regulation of the production of proinflammatory mediators, the roles of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in acute lung injury have not been elucidated.


Saline or lipopolysaccharide (LPS, 6 mg/kg of body weight) was administered intratracheally with a 1-hour pretreatment with SP600125 (a JNK inhibitor; 30 mg/kg, IO), or PD98059 (an MEK/ERK inhibitor; 30 mg/kg, IO). Rats were sacrificed 4 hours after LPS treatment.


SP600125 or PD98059 inhibited LPS-induced phosphorylation of JNK and ERK, total protein and LDH activity in BAL fluid, and neutrophil influx into the lungs. In addition, these MAP kinase inhibitors substantially reduced LPS-induced production of inflammatory mediators, such as CINC, MMP-9, and nitric oxide. Inhibition of JNK correlated with suppression of NF-kappaB activation through downregulation of phosphorylation and degradation of IkappaB-alpha, while ERK inhibition only slightly influenced the NF-kappaB pathway.


JNK and ERK play pivotal roles in LPS-induced acute lung injury. Therefore, inhibition of JNK or ERK activity has potential as an effective therapeutic strategy in interventions of inflammatory cascade-associated lung injury.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk