Send to

Choose Destination
Osteoarthritis Cartilage. 2004 Dec;12(12):963-73.

Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage.

Author information

Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-4872, USA.



To understand the molecular mechanisms that lead to increased MMP-13 expression and cartilage degeneration during the progression of osteoarthritis (OA), we have investigated the expression of the transcription factor RUNX2 in OA cartilage and the regulation of MMP-13 expression by RUNX2 and FGF2 in articular chondrocytes.


RUNX2 and MMP-13 expression in human OA and control cartilage was analyzed by immunohistochemistry. The effects of RUNX2 over-expression, with or without FGF2 treatment, on MMP-13 promoter activity and enzyme accumulation were measured in articular chondrocytes. Inhibitors of MEK/ERK were assayed for their ability to block FGF2 and RUNX2 up-regulation of the MMP-13 promoter. We analyzed RUNX2 phosphorylation in response to FGF2.


Fibrillated OA cartilage exhibited increased RUNX2 immunoreactivity when compared to control cartilage. RUNX2 co-localized with MMP-13 in clusters of chondrocytes in fibrillated OA cartilage. RUNX2 over-expression in cultured chondrocytes increased their responsiveness to FGF2 treatment, which led to increased MMP-13 expression. Inhibitors of MEK/ERK signaling blocked up-regulation of the MMP-13 promoter by RUNX2 and FGF2, and also blocked the activation of RUNX2 by FGF2. FGF2 treatment of articular chondrocytes increased RUNX2 phosphorylation approximately 2-fold.


Increased expression of RUNX2 in OA cartilage may contribute to increased expression of MMP-13. FGF2, which is present in OA synovial fluid, activated RUNX2 via the MEK/ERK pathway and increased MMP-13 expression. However, it is unlikely that RUNX2 is a substrate of ERK1/2. RUNX2 expression and activation may be a significant step in the progression of OA by promoting changes in gene expression and chondrocyte differentiation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center