Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2005;130(1):207-13.

The linoleic acid derivative FR236924 facilitates hippocampal synaptic transmission by enhancing activity of presynaptic alpha7 acetylcholine receptors on the glutamatergic terminals.

Author information

  • 1Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.

Abstract

The present study aimed at understanding the effect of FR236924, a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on hippocampal synaptic transmission in both the in vitro and in vivo systems. FR236924 increased the rate of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, triggered by nicotine in CA1 pyramidal neurons of rat hippocampal slices, that is inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor or alpha-bungarotoxin, an inhibitor of alpha7 acetylcholine (ACh) receptors. FR236924 stimulated glutamate release from rat hippocampal slices and in the hippocampus of freely behaving rats, and the effect was also inhibited by GF109203X or alpha-bungarotoxin. FR236924 induced a transient huge potentiation followed by a long-lasting potentiation in the slope of field excitatory postsynaptic potentials recorded from the CA1 region of rat hippocampal slices, and the latter effect was blocked by GF109203X or alpha-bungarotoxin. Likewise, the compound persistently facilitated hippocampal synaptic transmission in the CA1 region of the intact rat hippocampus. It is concluded from these results that FR236924 stimulates glutamate release by functionally targeting presynaptic alpha7 ACh receptors on the glutamatergic terminals under the influence of PKC, responsible for the facilitatory action on hippocampal synaptic transmission. This may provide evidence for a link between cis-unsaturated free fatty acids and presynaptic alpha7 ACh receptors in hippocampal synaptic plasticity.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center