Send to

Choose Destination
See comment in PubMed Commons below
Protein Sci. 2004 Dec;13(12):3200-13.

Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae.

Author information

Institute of Technical Biochemistry at the University of Stuttgart, D-70569 Stuttgart, Germany.


Family GH16 glycoside hydrolases can be assigned to five subgroups according to their substrate specificities, including xyloglucan transglucosylases/hydrolases (XTHs), (1,3)-beta-galactanases, (1,4)-beta-galactanases/kappa-carrageenases, "nonspecific" (1,3/1,3;1,4)-beta-D-glucan endohydrolases, and (1,3;1,4)-beta-D-glucan endohydrolases. A structured family GH16 glycoside hydrolase database has been constructed ( and provides multiple sequence alignments with functionally annotated amino acid residues and phylogenetic trees. The database has been used for homology modeling of seven glycoside hydrolases from the GH16 family with various substrate specificities, based on structural coordinates for (1,3;1,4)-beta-D-glucan endohydrolases and a kappa-carrageenase. In combination with multiple sequence alignments, the models predict the three-dimensional (3D) dispositions of amino acid residues in the substrate-binding and catalytic sites of XTHs and (1,3/1,3;1,4)-beta-d-glucan endohydrolases; there is no structural information available in the databases for the latter group of enzymes. Models of the XTHs, compared with the recently determined structure of a Populus tremulos x tremuloides XTH, reveal similarities with the active sites of family GH11 (1,4)-beta-D-xylan endohydrolases. From a biological viewpoint, the classification, molecular modeling and a new 3D structure of the P. tremulos x tremuloides XTH establish structural and evolutionary connections between XTHs, (1,3;1,4)-beta-D-glucan endohydrolases and xylan endohydrolases. These findings raise the possibility that XTHs from higher plants could be active not only on cell wall xyloglucans, but also on (1,3;1,4)-beta-D-glucans and arabinoxylans, which are major components of walls in grasses. A role for XTHs in (1,3;1,4)-beta-D-glucan and arabinoxylan modification would be consistent with the apparent overrepresentation of XTH sequences in cereal expressed sequence tags databases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center