Format

Send to

Choose Destination
J Food Prot. 2004 Nov;67(11):2430-5.

Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus.

Author information

1
Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China. wonghc@scu.edu.tw

Abstract

Vibrio parahaemolyticus is a common foodborne pathogen frequently causing outbreaks in summer. Maintenance of virulence by the viable but nonculturable (VBNC) state of this pathogen would allow its threat to human health to persist. This study reports on the change in virulence and concomitant changes in activity of two enzymes and fatty acid profiles when V. parahaemolyticus ST550 entered the VBNC state in the modified Morita mineral salt-0.5% NaCl medium incubated at 4 degrees C. The major change in fatty acid composition occurred in the first week, with a rapid increase in C15:0 fatty acid and saturated/unsaturated ratio while a rapid decrease in C16:1 was observed. The activity level of the inducible protective enzyme superoxide dismutase became undetectable in the VBNC state, whereas that of constitutive glucose-6-phosphate dehydrogenase did not change in either the exponential phase or the VBNC state. Cytotoxicity against HEp-2 cells and a suckling mouse assay showed that virulence was lowered in the VBNC state compared with exponential-phase cells. Longer incubation times were required by the VBNC cells to achieve the same level of virulence as seen in exponential-phase cells. Culturable cells were recovered on selective agar medium from the VBNC cultures injected into suckling mice, probably as the result of in vivo resuscitation. Results of this study add to our understanding of the biochemical and physiological changes that have not been reported when V. parahaemolyticus enters into the VBNC state.

PMID:
15553624
DOI:
10.4315/0362-028x-67.11.2430
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center