Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Feb 4;280(5):3715-22. Epub 2004 Nov 16.

Identification of transcriptional networks during liver regeneration.

Author information

1
Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

Abstract

The molecular analysis of mammalian cellular proliferation in vivo is limited in most organ systems by the low turnover and/or the asynchronous nature of cell cycle progression. A notable exception is the partial hepatectomy model, in which quiescent hepatocytes reenter the cell cycle and progress in a synchronous fashion. Here we have exploited this model to identify regulatory networks operative in the mammalian cell cycle. We performed microarray-based expression profiling on livers 0-40 h post-hepatectomy corresponding to G0, G1, and S phases. Differentially expressed genes were identified using the statistical analysis program PaGE (Patterns from Gene Expression), which was highly accurate as confirmed by quantitative reverse transcription-PCR of randomly selected targets. A shift in the transcriptional program from genes involved in lipid and hormone biosynthesis in the quiescent liver to those contributing to cytoskeleton assembly and DNA synthesis in the proliferating liver was demonstrated by biological theme analysis. In a novel approach, we employed computational pathway analysis tools to identify specific regulatory networks operative at various stages of the cell cycle. This allowed us to identify a large cluster of genes controlling mitotic spindle assembly and checkpoint control at the 40-h time point as regulated at the mRNA level in vivo.

PMID:
15546871
DOI:
10.1074/jbc.M410844200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center