Send to

Choose Destination
J Photochem Photobiol B. 2004 Dec 2;77(1-3):45-54.

DNA ligand Hoechst-33342 enhances UV induced cytotoxicity in human glioma cell lines.

Author information

Department of Biocybernetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Road, Timarpur, Delhi 110054, India.


The effects of minor groove binding ligand bisbenzimidazole derivative Hoechst-33342 on the cellular response to UV damage have been studied in two human glioma cell lines BMG-1 and U-87 grown as monolayer cultures. Treatment induced cell death (macro-colony assay) and growth inhibition, potential lethal damage recovery, cytogenetic damage (micronuclei formation) and proliferation kinetics were studied as parameters for cellular response. Pre and post-irradiation treatment with Hoechst-33342 (1-20 microM) enhanced the UV-induced growth inhibition and cell death in a concentration dependent manner in both cell lines. At higher Hoechst-33342 concentrations (>5 microM), the cytotoxic effects of the combination (Hoechst-33342+UV) were highly synergistic and mainly mediated through apoptosis implying the possible interactions of lesions caused by both the agents. The enhanced cell death due to Hoechst-33342 was accompanied by a significant increase (2-3 folds at 5 microM) in UV-induced micronuclei formation in BMG-1 cells. Under these conditions, Hoechst-33342 also enhanced the UV-induced cell cycle delay, mainly due to S and G(2) blocks. The increase in UV-induced micronuclei formation observed after treatment with Hoechst-33342 indicates that the DNA bound Hoechst-33342 may interfere with the rejoining of DNA strand breaks. Since the treatment of cells with the replication inhibitor aphidicolin reduced the enhancement of UV induced cytotoxicity by Hoechst-33342, ongoing DNA replication appears to stimulate Hoechst-33342 and UV-induced cytotoxicity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center