Format

Send to

Choose Destination
Trends Neurosci. 2004 Dec;27(12):712-9.

The Bayesian brain: the role of uncertainty in neural coding and computation.

Author information

1
Center for Visual Science and the Department of Brain and Cognitive Science, University of Rochester, NY 14627, USA. knill@cvs.rochester.edu

Abstract

To use sensory information efficiently to make judgments and guide action in the world, the brain must represent and use information about uncertainty in its computations for perception and action. Bayesian methods have proven successful in building computational theories for perception and sensorimotor control, and psychophysics is providing a growing body of evidence that human perceptual computations are "Bayes' optimal". This leads to the "Bayesian coding hypothesis": that the brain represents sensory information probabilistically, in the form of probability distributions. Several computational schemes have recently been proposed for how this might be achieved in populations of neurons. Neurophysiological data on the hypothesis, however, is almost non-existent. A major challenge for neuroscientists is to test these ideas experimentally, and so determine whether and how neurons code information about sensory uncertainty.

PMID:
15541511
DOI:
10.1016/j.tins.2004.10.007
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center