Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2004 Dec 17;325(3):726-30.

Glycogen and related polysaccharides inhibit the laforin dual-specificity protein phosphatase.

Author information

  • 1Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Abstract

Lafora disease, a progressive myoclonus epilepsy, is an autosomal recessive disease caused in approximately 80% of cases by mutation of the EPM2A gene, which encodes a dual specificity protein phosphatase called laforin. In addition to its phosphatase domain, laforin contains an N-terminal carbohydrate-binding domain (CBD). Mouse laforin was expressed as an N-terminally polyHis tagged protein in Escherichia coli and purified close to homogeneity. The enzyme was active towards p-nitrophenylphosphate (50-80mmol/min/mg, K(m) 4.5mM) with maximal activity at pH 4.5. Laforin binds to glycogen, as previously shown, and caused potent inhibition, half maximally at approximately 1mug/ml. Less branched glucose polymers, amylopectin and amylose, were even more potent, with half maximal inhibition at 10 and 100ng/ml, respectively. With all polysaccharides, however, inhibition was incomplete and laforin retained 20-30% of its native activity at high polysaccharide concentrations. Glucose and short oligosaccharides did not affect activity. Substitution of Trp32 in the CBD by Gly, a mutation found in a patient, caused only a 30% decrease in laforin activity but abolished binding to and inhibition by glycogen, indicating that impaired glycogen binding is sufficient to cause Lafora disease.

PMID:
15541350
DOI:
10.1016/j.bbrc.2004.10.083
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center