Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2004 Nov 1;43(31):5901-10.

Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone.

Author information

Department of Mechanical Engineering, Stanford University, Building 520, Room 5201, Stanford, California 94302-3032, USA.


We measured fluorescence quantum yields of acetone and 3-pentanone as a pure gas and with nitrogen diluent at room temperature at 20, 507, and 1013 mbar using 248, 266, and 308 nm excitation by calibrating the optical collection system with Rayleigh scattering from nitrogen. At 20 mbar with 308-nm excitation, the fluorescence quantum yields for acetone and 3-pentanone are 7 +/- 1 x 10(-4) and 1.1 +/- 0.2 x 10(-3), respectively, and each decreases with decreasing excitation wavelength. These directly measured values are significantly lower than earlier ones that were based on a chain of relative measurements. The observed pressure and excitation wavelength dependence is in qualitative agreement with a previously developed fluorescence quantum yield model, but the absolute numbers disagree. Changing acetone's fluorescence rate constant to 3 x 10(5) s(-1) from its previous value of 8 x 10(5) s(-1) resulted in good agreement between our measurements and the model.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center