Send to

Choose Destination
Am J Nephrol. 2004 Sep-Oct;24(5):557-68. Epub 2004 Nov 10.

Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants.

Author information

Department of Urology, Vattikuti Urology Institute and Henry Ford Health Sciences Center, Detroit, Mich. 48202, USA.



Peroxidation of renal cells is a critical event in the nucleation and formation of calcium oxalate crystals under hyperoxaluric conditions. We previously demonstrated that oxalate-induced peroxidative injury is one of the major mechanisms in promoting crystal attachment to renal epithelial cells.


In this study we have demonstrated that the mechanism of oxalate-induced peroxidative injury is through the induction of TGF-beta1 and glutathione (GSH) redox imbalance in LLC-PK1 cells.


LLC-PK1, renal epithelial cells exposed to oxalate had significantly higher reactive oxygen species (ROS) production; higher TGF-beta1 levels, as measured by ELISA (1.89 +/- 0.035 fold increase) or Western blot (1.65 +/- 0.01 fold increase); increased malondialdehyde formation; increased LDH release, and loss of cell viability. In addition, oxalate exposure significantly decreased GSH content, glutathione reductase, glucose-6-phosphate dehydrogenase activities, and increased oxidized GSH content. Treatment with vitamin E, neutralizing anti-TGF-beta antibody, or diphenylene iodium, an inhibitor of NAD(P)H oxidase, significantly inhibited oxalate-induced ROS production and prevented peroxidative injury and cytolysis. Vitamin E, catalase, or desferoxamine treatment also significantly restored the oxalate-induced cellular GSH redox status toward the control level, and vitamin E treatment significantly attenuated the oxalate-mediated increase in TGF-beta1 protein in cultured LLC-PK1 cells.


This is the first study to demonstrate that the mechanism of oxalate-induced free radical production in renal tubular epithelial cells is through the activation of NAD(P)H oxidase via cytokine TGF-beta1 induction. These results also provide direct evidence that antioxidant therapy might prevent calcium oxalate nucleation and kidney stone formation by preventing oxalate-mediated peroxidative injury and GSH redox imbalance.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center